Using SPI on the Vortex86

7

Summary How to configure and use the SPI bus on the
Application Note Vortex86SX and Vortex86DX processors.

AP0103 (v1)

These DOS code examples were written and compile using Borland Turbo C++.
There is a download link for this compiler at http://cc.embarcadero.com/item/26014

This should be read in conjunction with application note AP0100 ‘Using GPIO on the
Vortex86’ and AP0102 ‘Accessing North Bridge and South Bridge registers on the
Vortex86.

The Vortex86 has two SPI interfaces: internal and external. The internal SPI bus is
integral to the Vortex86 chip and accesses the on-chip SPI flash. The external SPI bus
is available for use by an application. By reading and writing to specific registers in the
processor the Vortex86 will generate all the required signals to communicate with an
SPI device.

Where the Vortex86 has been designed into an ICOP SystemOnModule the external
SPI bus has been connected to an on-board SPI flash device. If this external SPI flash
has been enabled as a disk drive in the BIOS then the SPI interface will not be available
for application use.

This application note will explain how to connect an SPI SRAM device to a Vortex86
SystemOnModule and then give some example code to access the memory.

The SPI interface has four dedicated pins: Chip select, Clock, Serial data in and serial
data out. Four of the Vortex 86 GPIO pins have been allocated to SPI.

GPIOPIN | SPIFUNCTION
PORT3 0 SP|_CS#
PORT3 1 SPI_CLK
PORT3 2 SPI DO
PORT3 3 SP|_DI

It is important to note that the SPI_CS# pin will be wired to the chip select pin of the on-
board flash device and so this signal cannot be used even if the on-board flash has
been disabled. To overcome this it is a simple matter to use another GPIO pin for the
chip select of the new device, this will be demonstrated in this example.

Copyright © 2012 Datasound Laboratories Ltd, England | Tel: +44 (0)1462 675530 | Web: www.dsl-Itd.co.uk

http://cc.embarcadero.com/item/26014

Using SPI on the Vortex86

The chosen device for this example is a Microchip® 23K640 which is 64K serial SRAM.
The pinout is shown below:-

_ Ny

cs g1 8 Vece

sSo 2 7[1HOLD
NC O3 61 SCK

Vss 4 50 sl

The following table shows the connections between the Vortex86 and the SRAM device.

Vortex 86 Pin name SRAM pin name
GPIO_P3[1]/SPI _CLK SCK
GPIO_P3[2]/SPI_DO Sl

GPIO_P3[3]/SPI DI SO

GPIO_P2[0] CS#

For this example GPIO port 2 bit 0 has been allocated as the chip select pin but this can
be any available GPIO signal.

Vortex86 SPI registers
There are 6 registers associated with the external SPI interface:-

IO Address Register Name
BA+08h External SPI output data register
BA+09h External SPI input data register
BA+0Ah External SPI control register
BA+0Bh External SPI status register
BA+0Ch External SPI chip select register
BA+0Dh External SPI error status register

BA is the Base Address which is a programmable address stored in another register
located at NorthBridge PCI configuration address 40h.

Bit Description

31-4 | SPI base address

3-2 Reserved

1 Memory or 10 space

0 SPI base address enabled when set.

Normally the Base address is set to FC0O8h. The following code example will allow this
value to be computed rather than hard coded.

Copyright © 2012 Datasound Laboratories Ltd, England | Tel: +44 (0)1462 675530 | Web: www.dsl-Itd.co.uk

Using SPIl on the Vortex86

Example DOS program

#include <dos.h>
#include <stdio.h>

typedef unsigned char byte;

#define PCI_ADDRESS 0xcf8
#define PCI_DATA Oxcfc

#define PORT 2 DATA 0x7A
#define PORT 2 DIR O0x9A

// 32 bit operations
#define OPERAND32 asm db 66h

// prototypes
void outport32 (unsigned long, unsigned long);
unsigned long inport32 (unsigned long);

void main (void)

{
unsigned long SPI reg addr;

SPI_reg addr=inport32(0x80000040) & Ox0000FFFFL; // read address from BADDR
if ((SPI_reg_addr & 0x1)==0)

{

printf ("SPI not enabled\n\r");

return;

}

// show address type
if (SPI_reg addr & 00000002L)

printf ("Address in memory space\n\r");
else

printf ("Address in IO space\n\r");

printf ("SPI reg Address = $04X\n\r",SPI reg addr);

SPI_reg_addr &= 0x0000f£ffOL;
SPI_reg_addr += 8; // for external SPI

printf ("Extern SPI base address = $04X\n\r",SPI_reg addr);

} // end of main

void outport32 (unsigned long Address, unsigned long Data)
{
asm mov dx, PCI_ADDRESS
OPERAND32
asm mov ax,Address
OPERAND32
asm out dx,ax
asm mov dx, PCI_DATA
OPERAND32
asm mov ax,Data
OPERAND32
asm out dx,ax

Copyright © 2012 Datasound Laboratories Ltd, England | Tel: +44 (0)1462 675530 | Web: www.dsl-ltd.co.uk

Using SPI on the Vortex86

unsigned long inport32 (unsigned long Address)
{

long int Value;
asm mov dx, PCI_ADDRESS

OPERAND32

asm mov ax,Address
OPERAND32

asm out dx,ax

asm mov dx,PCI_DATA
OPERAND32

asm in ax,dx
OPERAND32

asm mov Value,ax
return Value;

The following tables detail the SPI registers:-

External SPI output data register - BASE_ADDR+08h

BIT Name Attribute Description

7-0 OUTDAT WO Write - Data output to SPI
Read — No action

External SPI input data register - BASE_ ADDR+09h

BIT Name Attribute Description

7-0 INDAT R/W Write — Preload data from SPI
Read — Read data from register

External SPI control register - BASE ADDR+0Ah — Reset value = 15h

BIT Name Attribute Description

7-5 RSD RO Reserved

4 FIEN R/W FIFO mode enabled when set
3-0 CKDIV R/W SPI clock divider=DRAM CLK/(2 * CKDIV)
External SPI status register - BASE ADDR+0Bh — Reset value = 10h
BIT Name Attribute Description

7 BUSY RO Set if controller busy

6 FIFU RO Set if FIFO full

5 IDR RO Set if input data ready

4 OCD RO Set if output complete / FIFO empty
3-0 RSVD RO Reserved

Copyright © 2012 Datasound Laboratories Ltd, England | Tel: +44 (0)1462 675530 | Web: www.dsl-Itd.co.uk

Using SPI on the Vortex86

External SPI chip select register - BASE_ADDR+0Ch — Reset value = 01h
This register will not be used in this example as the chip select will use a GPIO pin
rather than the dedicated SP1_CS# controlled by this register.

BIT Name Attribute Description
7-1 RSVD RO Reserved
0 CS R/W 0:CS# low 1:CS# high

External SPI error status register —- BASE_ADDR+0dh — Reset value = 00h

BIT Name Attribute Description
7-5 RSVD RO Reserved
4 WCTE R/WC A write attempted to external SPI control register
when controller was busy.
Write ‘1’ to clear
3 DOLE R/WC Input data overlap
Write ‘1’ to clear
2 FIURE R/WC FIFO under-run
Write ‘1’ to clear
1 FIORE R/WC FIFO over-run
Write ‘1’ to clear
0 RSVD RO Reserved

23K640 SRAM device SPI commands:-

For simplicity this example will simply read and write a single byte in SRAM at location

Zero.

Write sequence:

chip select low

send write instruction — 02h

send 16-bit address msb,lIsb

send data

chip select high to terminate the operation

Read sequence:

chip select low

send read instruction — 03h

send 16-bit address msb,Isb

receive data

chip select high to terminate the operation

Copyright © 2012 Datasound Laboratories Ltd, England | Tel: +44 (0)1462 675530 | Web: www.dsl-Itd.co.uk

Using SPI on the Vortex86

To write a byte to the SPI the function simply needs to perform an IO write to the
External SPI output data register. Before continuting the function needs to read the
External SPI status register and wait until the interface is not busy and the ‘output
complete bit’ is set.

To read a byte from the SPI the function needs to perform an IO write with any value to
the External SPI input data register which causes the SPI to preload the register with
data from the SPI device. The function needs to read the External SPI status register
and wait until the interface is not busy and the ‘input data ready’ bit is set, then the data
can be read back from the External SPI input data register.

Full source code

#include <dos.h>
#include <stdio.h>

typedef unsigned char byte;

#define PCI_ADDRESS 0Oxcf8
#define PCI_DATA Oxcfc

#define PORT_ 2 DATA 0x7A
#define PORT 2 DIR O0x9A

// 32 bit operations
#define OPERAND32 asm db 66h

// prototypes

void outport32 (unsigned long, unsigned long);
unsigned long inport32 (unsigned long) ;

void write sram(int, byte);

byte read sram(int);

void wait SPI output complete (void);

void wait_SPI data ready(void);

// global variables
unsigned long SPI reg addr;

void main (void)

{

byte SRAM Data;
unsigned long Value;
int sb_val;

SPI reg addr=inport32(0x80000040) & Ox0000FFFFL; // read address from BADDR
if ((SPI_reg addr & 0x1)==0)

{

printf ("SPI not enabled\n\r");

return;

}

- Copyright © 2012 Datasound Laboratories Ltd, England | Tel: +44 (0)1462 675530 | Web: www.dsl-Itd.co.uk

Using SPIl on the Vortex86

// show address type
if (SPI_reg addr & 00000002L)

printf ("Address in memory space\n\r");
else

printf ("Address in IO space\n\r");

printf ("SPI reg Address = %04X\n\r",SPI reg addr);

SPI_reg addr &= 0x0000ffffOL;
SPI_reg_addr += 8; // for external SPI

printf ("Extern SPI base address = %04X\n\r",SPI reg addr);

Value=inport32 (0x800038c0) ;
printf ("GPIO setting = %$X\n\r",Value);
outport32 (0x800038c0,Value | 0x00000001L) ;

Value=inportb (SPI_reg addr+3);
printf ("SPI status reg = %$X\n\r",Value);

// set up the chip select on GPIO 2 pin 1
outportb (PORT 2 DIR,0x1); // bit 0 is output

write sram(0x0,0x55);
printf ("Data read = $x\n\r",read sram(0));

write sram(0x0,Oxaa);
printf ("Data read = $x\n\r",read sram(0));
} // end of main

void write sram(int Address,byte Data)

{
byte msb, 1lsb, tmp;

// split the address into 2 bytes
1lsb = Address & 0xff;

Address = Address >> 8;

msb = Address & Oxff;
outportb (PORT 2 DATA,0); // cs low

outportb (SPI reg addr,0x02); // issue write instruction
wait SPI_output_complete();

outportb (SPI reg addr,msb) ; // address_msb
wait SPI output complete();

outportb (SPI_reg addr,lsb); // address_1lsb
wait SPI output complete();

outportb (SPI_reg addr,Data); // data to write
wait SPI output complete();

outportb (PORT 2 DATA,1); // cs high

Copyright © 2012 Datasound Laboratories Ltd, England | Tel: +44 (0)1462 675530 | Web: www.dsl-ltd.co.uk

Using SPIl on the Vortex86

byte read sram(int Address)

{
byte msb, 1lsb, Data;

// split the address into 2 bytes
1sb = Address & 0xff;

Address = Address >> 8;

msb = Address & 0xff;

outportb (PORT 2 DATA,0); // cs low

outportb (SPI reg addr,0x03); // issue read instruction
wailt SPI output complete();

outportb (SPI_reg addr,msb); // address msb
wailt SPI output complete();

outportb (SPI_reg addr,lsb); // address_1lsb
wait SPI output complete();

outportb (SPI_reg addr+1,0x00); // preload data from SPI
wait SPI data ready();

Data=inportb (SPI_reg addr+l); // read in data
outportb (PORT 2 DATA,1l); // cs high

return Data;

void wait SPI output complete (void)
{
byte Value,Busy,Complete;
while (1)
{
Value = inportb(SPI_reg addr+3);
Busy = Value & 0x80;
Complete = Value & 0x10;
if (Complete==0x10 && Busy==0) return;

void wait SPI data ready(void)
{
// reads the stsatus register, ANDs the result with the mask and teturns 1 or zero
// bits 0-3 reserved
// bit 4 = output complete/FIFO empty when set
// bit 5 = input data ready when set.
// bit 6 = FIFO full
// bit 7 = Busy
byte Value,Busy, InputReady;
while (1)
{
Value = inportb(SPI reg addr+3);
Busy = Value & 0x80;
InputReady = Value & 0x20;
if (InputReady==0x20 && Busy==0) return;

_ Copyright © 2012 Datasound Laboratories Ltd, England | Tel: +44 (0)1462 675530 | Web: www.dsl-ltd.co.uk

Using SPI on the Vortex86

void outport32 (unsigned long Address, unsigned long Data)
{
asm mov dx,PCI_ADDRESS
OPERAND32
asm mov ax,Address
OPERAND32
asm out dx,ax
asm mov dx,PCI_DATA
OPERAND32
asm mov ax,Data
OPERAND32
asm out dx,ax

unsigned long inport32 (unsigned long Address)
{

long int Value;

asm mov dx,PCI_ADDRESS
OPERAND32

asm mov ax,Address
OPERAND32

asm out dx,ax

asm mov dx,PCI DATA
OPERAND32

asm in ax,dx
OPERAND32

asm mov Value,ax
return Value;

Disclaimer
All information contained in this application note is believed to be accurate and reliable. However, DSL
Ltd assumes no responsibility for its use. Since conditions of product use are outside our control, we
make no warranties express or implied in relation thereto. We therefore cannot accept any liability in
connection with any use of this information. Nothing herein is to be taken as a license to operate under or
recommendation to infringe any patents.

Whilst every effort has been made to ensure that this document is correct; errors can occur. If you find
any errors or omissions please let us know so that we can put them right.

_ Copyright © 2012 Datasound Laboratories Ltd, England | Tel: +44 (0)1462 675530 | Web: www.dsl-Itd.co.uk

