

Using GPIO on the Vortex86

Summary
Application Note
AP0100 (v1)

How to configure and drive the GPIO pins on the
Vortex86SX and Vortex86DX processors.

1 Copyright © 2012 Datasound Laboratories Ltd, England | Tel: +44 (0)1462 675530 | Web: www.dsl-ltd.co.uk

These DOS code examples were written and compile using Borland Turbo C++.
There is a download link for this compiler at http://cc.embarcadero.com/item/26014

All the GPIO pins on the Vortex86 are independent and can be configured as inputs or
outputs.

Not all Vortex86 modules provide access to all of the GPIO ports. Table 1 includes
addresses for all ports for completeness.

The ports are all controlled by reading and writing from register pairs in the I/O space of
the Vortex86. The register locations are shown in Table 1.

 Port 0 Port
1

Port
2

Port
3

Port4

Data Register Address 78h 79h 7Ah 7Bh 7Ch

Direction Register Address 98h 99h 9Ah 9Bh 9Ch
Table 1

For each of the registers, the 8 bits are mapped to the respective GPIO pins.
The direction register determines the direction of each GPIO pin:

 0 = input mode

 1=output mode

Example values to write into register for port 0:

 Writing 00h to register 98h makes all pins input

 Writing FFh makes all pins output

 Writing F0h makes pins [7-4] 0utputs and pins [3-0] inputs

The data register is a read/write register; again the 8 GPIO pins are mapped to the 8
bits of the register. A logic 1 denotes the pin is high and a logic 0 denotes the pin low.

Only pins set to output are affected by a write operation, the status of all the pins can be
read from the register, regardless of direction.

http://cc.embarcadero.com/item/26014

Using GPIO on the Vortex86

2 Copyright © 2012 Datasound Laboratories Ltd, England | Tel: +44 (0)1462 675530 | Web: www.dsl-ltd.co.uk

Example DOS program

#include <dos.h>

#define PORT_0_DATA 0x78

#define PORT_0_DIR 0x98

void main (void)

{

unsigned char ReadValue;

// set all port 0 pins to input

 outportb(PORT_0_DIR,0x00);

// read in the value

 ReadValue = inportb(PORT_0_DATA);

// Now drive pins on port 0

// First set all port 0 pins to output

 outportb(PORT_0_DIR,0xff);

// drive all pins high

 outportb(PORT_0_DATA,0xff);

// drive all pins low

 outportb(PORT_0_DATA,0x00);

// put the pattern 01010101 out to GPIO 0

 outportb(PORT_0_DATA,0x55);

// example of reading the port first to enable just a single pin to be changed

 ReadValue=inportb(PORT_0_DATA); //read in current status of all pins

 ReadValue = (ReadValue | 0x02); // set bit we wish to change

 outportb(PORT_0_DATA,ReadValue);

 // bit pattern will now be 01010111

} // end of main

Disclaimer
All information contained in this application note is believed to be accurate and reliable. However, DSL
Ltd assumes no responsibility for its use. Since conditions of product use are outside our control, we
make no warranties express or implied in relation thereto. We therefore cannot accept any liability in
connection with any use of this information. Nothing herein is to be taken as a license to operate under or
recommendation to infringe any patents.

Whilst every effort has been made to ensure that this document is correct; errors can occur. If you find
any errors or omissions please let us know so that we can put them right.

